Implementing a Weblogic Architecture with High Availability

Contents
1. Introduction .. 3
2. Topology... 3
2.1. Limitations... 3
2.2. Servers diagram .. 4
2.3. Weblogic diagram .. 4
3. Components ... 6
3.1. Hardware ... 6
3.2. Software .. 6
3.3. Domains .. 7
4. File system preparation ... 7
4.1. Oracle ZFS configuration ... 9
4.2. Local storage configuration .. 12
5. Machines preparation .. 13
5.1. Networking configuration .. 13
5.1.1. Configuring virtual IPs .. 14
5.1.2. Modifying host files ... 16
5.2. Creating directories .. 17
5.3. Mounting file systems .. 18
5.4. Creating users, groups and giving privileges .. 19
5.4.1. Creating operating system users and groups ... 19
5.4.2. Setting privileges .. 20
6. Products Installation ... 21
6.1. JDKs ... 21
6.2. Weblogic ... 22
6.3. Oracle Http Server .. 26
7. Creating domains ... 31
7.1. Creating the load balancer domain .. 31
7.2. Creating the web layer domain .. 36
7.3. Applications domain ... 37
7.3.1. Domain creation .. 37
7.3.2. Extending the domain to create the managed server WLS_01 on weblogic01.sysco.no \ldots 45
7.3.3. Creating the cluster directory .. 48
7.3.4. Extending the domain to create the managed server WLS_02 on weblogic02.sysco.no \ldots 49
8. Configuring the load balancer .. 50
9. Configuring virtual hosts on ohs01 and ohs02 instance .. 54
10. Configuring the frontend host and the frontend http port .. 58
10.1. Configuring the cluster WLCluster_01 ... 58
10.2. Configuring the AdminServer ... 59
11. Testing the Administration Server high availability ... 60
12. Conclusions ... 63
13. References list .. 63
1. **Introduction**
As a **system administrator**, I faced the challenge of building several application server architectures with high availability. This kind of work is a challenge because it compromises several layers and professionals. However, one of the most important problems is the lack of documents that allow new system administrators the revision of the whole process. With this in mind, the purpose of this document is to show several of the most important phases to deploy an architecture like this.

2. **Topology**
2.1. **Limitations**
Before showing the topology, it is important to remark that this document is based on the design presented in [1]. Thus, the following model is used as a reference.

![Architecture designed by Oracle [1]](image)

However, because of the resources limitations given by implementing a virtual environment on a laptop. These components will not be used:
- Domain Name Servers
- Firewalls
- The database

In addition, the architecture deployed in this post will not implement Oracle SOA. Thus, this is the topology used in this document.

2.2. **Servers diagram**

This is a high-level design of the servers used in this document. The load balancer is implemented using Oracle HTTP Server. All the servers shown in the diagram are virtual servers on Oracle VM.

2.3. **Weblogic diagram**

The following diagram shows more details about the Weblogic architecture implemented in this document. In general, it is composed by

- A load balancer,
- Two web servers,
- An administration server,
- Two managed server conforming a cluster distributed within two machines
- A storage server based on the Oracle ZFS simulator to demonstrate how to configure the architecture using shared storages.
Load Balancer (lbohs.sysco.no)

app12c.sysco.no:443
SSL

admin12c.sysco.no:80
Non-SSL

Memory: 1.5 GB
File Systems: Local
Version: Oracle HTTP Server 12C
OS: Oracle Linux 6.5
Hypervisor: Oracle VM

weblogic01.sysco.no

AdminServer
VIP: 192.180.56.10
Port: 9001

WLS_01
VIP: 192.180.56.11
Port: 9003

Memory: 2.0 GB
File Systems: Shared
Version: Oracle Weblogic Server 12C
OS: Oracle Linux 6.5
Hypervisor: Oracle VM

weblogic02.sysco.no

WLS_02
VIP: 192.180.56.12
Port: 9003

Memory: 2.0 GB
File Systems: Shared
Version: Oracle Weblogic Server 12C
OS: Oracle Linux 6.5
Hypervisor: Oracle VM

Storagehost.sysco.no

Memory: 2.5 GB
SATA Controller: 16 Ports
Version: Oracle ZFS Storage Appliance Simulator
OS: Solaris
Hypervisor: Oracle VM
3. **Components**

This architecture is deployed on a laptop using Oracle Virtual VM and Oracle Linux so these are the components.

3.1. Hardware

Laptop

Memory: 16 GB
Processor: 1 socket, 4 cores and 2 threads so there are 8 VCPUs.
Speed: 2.49 GHz

Virtual servers

<table>
<thead>
<tr>
<th>SERVER</th>
<th>IP</th>
<th>Description</th>
<th>Memory in GB</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>lbohs.sysco.no</td>
<td>192.180.56.190</td>
<td>Load balancer</td>
<td>1.5</td>
<td>Oracle Linux 6.5</td>
</tr>
<tr>
<td>ohs01.sysco.no</td>
<td>192.180.56.191</td>
<td>Web server</td>
<td>1.5</td>
<td>Oracle Linux 6.5</td>
</tr>
<tr>
<td>ohs02.sysco.no</td>
<td>192.180.56.192</td>
<td>Web server</td>
<td>1.5</td>
<td>Oracle Linux 6.5</td>
</tr>
<tr>
<td>weblogic01.sysco.no</td>
<td>192.180.56.200</td>
<td>Application server</td>
<td>2.0</td>
<td>Oracle Linux 6.5</td>
</tr>
<tr>
<td>weblogic02.sysco.no</td>
<td>192.180.56.201</td>
<td>Application server</td>
<td>2.0</td>
<td>Oracle Linux 6.5</td>
</tr>
<tr>
<td>storagehost.sysco.no</td>
<td>192.180.56.100</td>
<td>Storage</td>
<td>2.5</td>
<td>Solaris</td>
</tr>
</tbody>
</table>

File system

It is important to remark that in order to simulate the high availability of the Administration Server the Oracle ZFS simulator is used as a shared storage. In addition binaries and managed servers will be installed on these file systems [2].

3.2. Software

This is the list of products to install.

<table>
<thead>
<tr>
<th>Product</th>
<th>Version</th>
<th>Installer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Weblogic Server</td>
<td>12.1.3</td>
<td>V44413-01.zip (fmw_12.1.3.0.0_wls.jar)</td>
</tr>
<tr>
<td>Java Development Kit</td>
<td>7u55</td>
<td>jdk-7u55-linux-x64.gz</td>
</tr>
<tr>
<td>Oracle HTTP Server</td>
<td>12.1.3</td>
<td>V44417-01.zip (fmw_12.1.3.0.0_ohs_linux64.bin)</td>
</tr>
<tr>
<td>Operating System Packages</td>
<td></td>
<td>compat-libcap1-1.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>compat-libstdc++-33-3.2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>libstdc++-devel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gcc-c++</td>
</tr>
<tr>
<td></td>
<td></td>
<td>libaio-devel-0.3.107</td>
</tr>
</tbody>
</table>

Before installing review the certification. According to [5] this configuration is supported by Oracle as can be seen in the following screens.
3.3. Domains

The configuration of Oracle HTTP Server 12C is similar to the Weblogic server configuration. In previous versions like 11G Oracle HTTP Server did not need a domain. These domains are defined within this document.

- The load balancer
- The ohs1 as part of the web layer
- The ohs2 as part of the web layer
- The domain for the application layer

All of these domains use the same name “incadomain”

4. File system preparation

According to [1] these is a suitable structure to implement a Weblogic server with high availability.

“Recommended Shared Storage Directory Structure for an Enterprise Deployment” [1]
"Recommended Local Storage Directory Structure for an Application Tier Host Computer in an Enterprise Deployment" [1]
"Recommended Local Storage Directory Structure for a Web Tier Host Computer in an Enterprise Deployment" [1]

The difference between the topology developed in this document and that proposed by [1] is that application tier host (managed servers) use shared storages. These are the steps to configure the file systems.

4.1. **Oracle ZFS configuration**

After analyzing the structures provided by Oracle in [1] and taking into account that managed server will use shared storages. This is the list of file systems created on the Oracle ZFS storage simulator.

<table>
<thead>
<tr>
<th>File System</th>
<th>MACHINE</th>
<th>DESCRIPTION</th>
<th>U</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>fsbinaries01</td>
<td>weblogic01</td>
<td>Products</td>
<td>u01</td>
<td>Products binary files</td>
</tr>
<tr>
<td>fsms01</td>
<td>weblogic01</td>
<td>Config</td>
<td>u02</td>
<td>Managed Server</td>
</tr>
<tr>
<td>fsbinaries02</td>
<td>weblogic02</td>
<td>Products</td>
<td>u01</td>
<td>Products binary files</td>
</tr>
<tr>
<td>fsms02</td>
<td>weblogic02</td>
<td>Config</td>
<td>u02</td>
<td>Managed Server</td>
</tr>
<tr>
<td>fsadm</td>
<td>weblogic01, contingency weblogic02</td>
<td>Config</td>
<td>u01</td>
<td>Administration Server</td>
</tr>
<tr>
<td>fsapp</td>
<td>weblogic01, weblogic02</td>
<td>Applications</td>
<td>u01</td>
<td>Applications developed</td>
</tr>
<tr>
<td>fsdp</td>
<td>weblogic01, weblogic02</td>
<td>Deployment plans</td>
<td>u01</td>
<td>Deployment plans</td>
</tr>
<tr>
<td>fscluster</td>
<td>weblogic01, weblogic02</td>
<td>JMS, Tlogs</td>
<td>u01</td>
<td>JMS, Tlogs</td>
</tr>
</tbody>
</table>
The recommended protocol to implement this architecture is NFS V4 [2] and the instruction to create these file systems were taken from [3]. Thus, these are the screens related to these tasks.

1. Create a new project

Shares > Projects > Click on Add (+)

In this case the name is middleware 100815. Click on Apply

2. Changing the project’s properties

Double click on the project that has just created

Click on Protocols > NFS Exceptions
Adding servers that will access to the storage

Click on Shares > Filesystems

Fill this form in a similar way and click on Apply.
At the end this the list of file systems created.

<table>
<thead>
<tr>
<th>NAME</th>
<th>SIZE</th>
<th>MOUNTPOINT</th>
<th>ENCRYPTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>middleware100815/fsadm</td>
<td>31K</td>
<td>/export/fsadm</td>
<td>empty</td>
</tr>
<tr>
<td>middleware100815/fsapp</td>
<td>31K</td>
<td>/export/fsapp</td>
<td>empty</td>
</tr>
<tr>
<td>middleware100815/fsbinaries01</td>
<td>31K</td>
<td>/export/fsbinaries01</td>
<td>empty</td>
</tr>
<tr>
<td>middleware100815/fsbinaries02</td>
<td>31K</td>
<td>/export/fsbinaries02</td>
<td>empty</td>
</tr>
<tr>
<td>middleware100815/fscluster</td>
<td>31K</td>
<td>/export/fscluster</td>
<td>empty</td>
</tr>
<tr>
<td>middleware100815/fsdp</td>
<td>31K</td>
<td>/export/fsdp</td>
<td>empty</td>
</tr>
<tr>
<td>middleware100815/fsm01</td>
<td>31K</td>
<td>/export/fsm01</td>
<td>empty</td>
</tr>
<tr>
<td>middleware100815/fsm02</td>
<td>31K</td>
<td>/export/fsm02</td>
<td>empty</td>
</tr>
</tbody>
</table>

In this section, the file systems were created on the shared storage. In further activities they will be mounted on weblogic01.sysco.no and weblogic02.sysco.no.

4.2. **Local storage configuration**

The load balancer and web layer use Oracle HTTP Server so they are installed on local disks. In order to avoid competition with the Operating System an additional virtual disk is added for each one of the following servers.

- lbohs.sysco.no
- ohs01.sysco.no
- ohs02.sysco.no

These virtual disks has to be formatted and mounted on each one of these machines. For example, lbohs.sysco.no has
In order to format that disk, you have to use the root user to run:

```
fdisk /dev/sdb
```

The same procedure is applied on ohs01.sysco.no and ohs02.sysco.no.

5. **Machines preparation**

This section includes the activities done on the machines in order to support the installation of configuration of the topology.

5.1. **Networking configuration**

As was stated in 2.1 there is not a DNS so machine names have to be registered in the hosts files.

<table>
<thead>
<tr>
<th>SERVER</th>
<th>IP</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lbohs.sysco.no</td>
<td>192.180.56.190</td>
<td>Load balancer</td>
</tr>
<tr>
<td>ohs01.sysco.no</td>
<td>192.180.56.191</td>
<td>Web server</td>
</tr>
<tr>
<td>ohs02.sysco.no</td>
<td>192.180.56.192</td>
<td>Web server</td>
</tr>
<tr>
<td>weblogic01.sysco.no</td>
<td>192.180.56.200</td>
<td>Application server</td>
</tr>
<tr>
<td>weblogic02.sysco.no</td>
<td>192.180.56.201</td>
<td>Application server</td>
</tr>
<tr>
<td>storagehost.sysco.no</td>
<td>192.180.56.100</td>
<td>Storage</td>
</tr>
</tbody>
</table>

In addition, a set of virtual IPs are used to implement the Administration Server high availability and the possibility of configuring whole server migration.

Just to remember “A **virtual IP address is an unused IP Address which belongs to the same subnet as the host’s primary IP address. It is assigned to a host manually. Individual Managed Servers within the Oracle WebLogic Server domain are configured to listen on this IP Address.**” [1]. This is the list of virtual IPs.

<table>
<thead>
<tr>
<th>Machine</th>
<th>Virtual IP</th>
<th>Virtual host name</th>
<th>Weblogic server</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>weblogic01.sysco.no</td>
<td>192.180.56.10</td>
<td>admvhost.sysco.no</td>
<td>AdminServer</td>
<td>Administration server</td>
</tr>
<tr>
<td>weblogic01.sysco.no</td>
<td>192.180.56.11</td>
<td>ms01vhost.sysco.no</td>
<td>WLS_01</td>
<td>Managed server 01</td>
</tr>
<tr>
<td>weblogic02.sysco.no</td>
<td>192.180.56.12</td>
<td>ms02vhost.sysco.no</td>
<td>WLS_02</td>
<td>Managed server 02</td>
</tr>
</tbody>
</table>

Furthermore, two additional virtual IPs are defined to create a load balancer.

<table>
<thead>
<tr>
<th>Machine</th>
<th>Virtual IP</th>
<th>Virtual host name</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>lbohs.sysco.no</td>
<td>192.180.56.20</td>
<td>admin12c.sysco.no</td>
<td>Administration server requests</td>
</tr>
<tr>
<td>lbohs.sysco.no</td>
<td>192.180.56.21</td>
<td>app12c.sysco.no</td>
<td>Applications requests</td>
</tr>
</tbody>
</table>
5.1.1. **Configuring virtual IPs**

According to the previous section, this is the configuration for each server.

For `weblogic01.sysco.no`

```bash
cd /etc/sysconfig/network-scripts
cp ifcfg-eth0 ifcfg-eth0:1
vi ifcfg-eth0:1
```

Modify the file according to this picture to set the DEVICE, IPPADDR and NAME.

For `weblogic02.sysco.no`

```bash
cd /etc/sysconfig/network-scripts
cp ifcfg-eth0 ifcfg-eth0:2
vi ifcfg-eth0:2
```
vi ifcfg-eth0:1

For lbohs.sysco.no

The same steps are executed, these are the results.
5.1.2. Modifying host files

In this section host files are modified because of the lack of a DNS server. These are the results.

lbohs.sysco.no

```
[ root@lbohs ~ ] # cat /etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4 ::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
192.180.56.190 lbohs.sysco.no
192.180.56.191 ohs01.sysco.no
192.180.56.192 ohs02.sysco.no
192.180.56.28 admin12c.sysco.no
192.180.56.21 app12c.sysco.no
```

ohs01.sysco.no

```
[ root@ohs01 network scripts ] # cat /etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4 ::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
192.180.56.191 ohs01.sysco.no
192.180.56.190 lbohs.sysco.no
192.180.56.192 ohs02.sysco.no
192.180.56.200 weblogic01.sysco.no
192.180.56.201 weblogic02.sysco.no
192.180.56.10 adminhost.sysco.no
192.180.56.11 ms01vhost.sysco.no
192.180.56.12 ms02vhost.sysco.no
192.180.56.20 admin12c.sysco.no
192.180.56.21 app12c.sysco.no
```

ohs02.sysco.no

```
[ root@ohs02 ~ ] # cat /etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4 ::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
192.180.56.192 ohs02.sysco.no
192.180.56.190 lbohs.sysco.no
192.180.56.191 ohs01.sysco.no
192.180.56.200 weblogic01.sysco.no
192.180.56.201 weblogic02.sysco.no
192.180.56.10 adminhost.sysco.no
192.180.56.11 ms01vhost.sysco.no
192.180.56.12 ms02vhost.sysco.no
192.180.56.20 admin12c.sysco.no
192.180.56.21 app12c.sysco.no
```

weblogic01.sysco.no
5.2. Creating directories

In section 4, a distribution of directories is shown. These directories are implemented locally for web servers and on shared storages for application servers. These are the directories created in this document using the root user.

For weblogic01.sysco.no

/u01/oracle/config
/u01/oracle/products
/u02/oracle/config
/u01/oracle/config/dp
/u01/oracle/config/applications/incadomain

For weblogic02.sysco.no

/u02/oracle/config
/u01/oracle/products
/u01/oracle/config/dp
/u01/oracle/config/applications/incadomain
/u01/oracle/config/domains/incadomain/incaccluster
5.3. Mounting file systems

In this section, the process of mounting file systems is shown for each one of the machines. These activities are executed using the root user.

For weblogic01.sysco.no

Modify the /etc/fstab file to include these lines

```bash
# /etc/fstab
# Created by anaconda on Mon Aug 3 09:42:37 2015
# Accessible filesystems, by reference, are maintained under '/dev/disk'
# See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for more info
# /dev/mapper/vg_weblogic01-lv_root / ext4 defaults l 1 l
UUID=ad37def-baad-44ae-a182-ab30d029db9 /boot ext4 defaults l 1 l
/dev/mapper/vg_weblogic01-lv_swap swap swap defaults 0 0
tmpfs /dev/shm tmpfs defaults 0 0
depts /dev/pts devpts gid=5,mode=620 0 0
sysfs /sys sysfs defaults 0 0
proc /proc proc defaults 0 0
storagehost.sysco.no:/export/fsadm /u01/oracle/config nfs4 rw,bg,hard,nointr,proto=tcp
storagehost.sysco.no:/export/fsadm /u01/oracle/products nfs4 rw,hard,nointr,proto=tcp
storagehost.sysco.no:/export/fsadm /u01/oracle/products nfs4 rw,hard,nointr,proto=tcp
storagehost.sysco.no:/export/fsadm /u01/oracle/products nfs4 rw,hard,nointr,proto=tcp
storagehost.sysco.no:/export/fsadm /u01/oracle/config/nfs4 rw,hard,nointr,proto=tcp
```

IMPORTANT: For weblogic01.sysco.no the folder /u01/oracle/config/domains/incadomain/incaccluster will be created after creating the Domain. For that reason, in the previous picture, there is not any reference to the cluster folder

Execute this command

`mount -a`

For weblogic02.sysco.no

Modify the /etc/fstab file to include these lines
IMPORTANT: For weblogic02.sysco.no the cluster folder can be mounted without any problem as is shown in the previous picture. That is because in that machine the domain will be unpacked on /u02/oracle/config

Execute this command

`mount -a`

For ohs01.sysco.no, ohs02.sysco.no and lbohs.sysco.no

Modify the /etc/fstab file to include the remarked line.

Execute this command

`mount -a`

5.4. Creating users, groups and giving privileges

In this section the oracle user and groups dba and oinstall are created. In addition, privileges for users and groups are given.

5.4.1. Creating operating system users and groups

According to [1] the oracle user and the groups called dba and oinstall must be created on each node. In addition, these users and groups must have the same ID in each machine.

This table shows users and groups:
<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>oracle</td>
<td>User</td>
<td>501</td>
</tr>
<tr>
<td>oinstall</td>
<td>Group</td>
<td>502</td>
</tr>
<tr>
<td>dba</td>
<td>Group</td>
<td>503</td>
</tr>
</tbody>
</table>

Oracle will be member of oinstall and dba groups where oinstall is the main group.

Execute these commands on all the nodes: ohs01.sysco.no, ohs02.sysco.no, weblogic01.sysco.no, weblogic02.sysco.no, lbohs.sysco.no to create the user and groups [4].

```bash
groupadd -g 502 oinstall
groupadd -g 503 dba
useradd -c "Oracle software owner" -g oinstall -G dba oracle -u 501
```

`passwd oracle`

5.4.2. Setting privileges

In this section privileges are set for each server

lbohs.sysco.no

```bash
chown -R oracle:oinstall /u02/oracle
chmod -R 775 /u02/oracle
ls -ld /u02/oracle
```

ohs1.sysco.no

```bash
chown -R oracle:oinstall /u02/oracle
chmod -R 775 /u02/oracle
ls -ld /u02/oracle
```

ohs2.sysco.no

```bash
chown -R oracle:oinstall /u01/oracle
chmod -R 775 /u01/oracle
ls -ld /u01/oracle
```

weblogic01.sysco.no

```bash
chown -R oracle:oinstall /u01/oracle
chmod -R 775 /u01/oracle
ls -ld /u01/oracle
```

```bash
chown -R oracle:oinstall /u02/oracle
chmod -R 775 /u02/oracle
ls -ld /u02/oracle
```

weblogic02.sysco.no

```bash
chown -R oracle:oinstall /u01/oracle
chmod -R 775 /u01/oracle
ls -ld /u01/oracle
```

```bash
chown -R oracle:oinstall /u02/oracle
chmod -R 775 /u02/oracle
ls -ld /u02/oracle
```
6. **Products Installation**

6.1. **JDKs**

Previously 2 file systems (fsbinaries01 and fsbinaries02) were defined in order to install products. In this case we will work on this part of the file system. In addition, three local systems were defined for the web layer and balancer.

![Diagram showing the path where JDK is installed](image)

Figure that shows the path where JDK is installed

<table>
<thead>
<tr>
<th>Machine</th>
<th>Mount Point</th>
<th>NFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>weblogic01.sysco.no</td>
<td>/u01/oracle/products</td>
<td>/export/fsbinaries01</td>
</tr>
<tr>
<td>weblogic02.sysco.no</td>
<td>/u01/oracle/products</td>
<td>/export/fsbinaries02</td>
</tr>
<tr>
<td>lbohs.sysco.no</td>
<td>/u02/oracle/products</td>
<td>Local file system</td>
</tr>
<tr>
<td>ohs01.sysco.no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ohs02.sysco.no</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table of file systems where products will be installed

In order to install the JDK execute these steps on weblogic01.sysco.no, weblogic02.sysco.no, lbohs.sysco.no, ohs01.sysco.no and ohs02.sysco.no.

a. Login with the Oracle user

b. Go to the directory where the product will be installed

```bash
cd /u[0|1|2]/oracle/products/
```

c. Unpack the installer

```bash
tar zxvf [Installer path]/jdk-7u55-linux-x64.gz
```
6.2. Weblogic

This product is installed on weblogic01 and weblogic02. Execute the following steps in both machines.

Important: Take into account each server uses different storages to store products. Thus, copying inventories between servers is not necessary.

a. Create the ORACLE_HOME directory

```
mkdir /u01/oracle/products/fm1213
```

b. Set the JDK variables

```
export JAVA_HOME=/u01/oracle/products/jdk1.7.0_55
export PATH=$JAVA_HOME/bin:$PATH
```

c. Run the weblogic installer.

```
java -d64 -jar [Installer path]/fmw_12.1.3.0.0_wls.jar
```

d. Select the inventory directory, the OS group and click on Ok

![Image of weblogic installer]

```
- Central Inventory Directory
- Operating System Group:
- Central Inventory Pointer File
```

e. Click on Next
f. Set the ORACLE_HOME directory and click on Next

g. Select Weblogic Server and click on Next
h. Click on Next

i. Uncheck the checkbox and click on Next
j. Click on Save Response File (it will be useful to automate future installations) and click on Install

k. Click on Next
I. Uncheck the checkbox and click on Finish

m. Make a backup of the installation

6.3. Oracle Http Server

This product is installed on ohs01.sysco.no, ohs02.sysco.no and lbohs.sysco.no. Execute the following steps in these machines.

a. Use the root user account to install operating system packages.

```bash
yum install compat-libcap1=1.10
yum install compat-libstdc++-33=3.2.3
yum install libstdc++-devel
yum install gcc-c++
```
yum install libaio-devel-0.3.107

b. After installing operating system packages, use the oracle user account to create the ORACLE_HOME.

 mkdir /u02/oracle/products/fm1213

c. Execute the installer

 ./fmw_12.1.3.0.0_ohs_linux64.bin

d. Click on Ok

e. Click on Next

f. Set the ORACLE_HOME path and click on Next
g. Select Standalone HTTP Server and click on Next

h. Click on Next
i. Uncheck the checkbox and click on Next

j. Click on Install
k. Click on Next

l. Click on Finish
m. Make a backup of the installation

7. Creating domains

7.1. Creating the load balancer domain

In this section a machine will be configured as a load balancer. The machine is lbohs.sysco.no and the OHS was installed in the previous section. In addition, a JVM was also installed because the Oracle HTTP Server 12C is configured to use an Oracle Weblogic Domain, which is different from previous versions like 11G.

In order to configure the domain follow these steps.

a. Login with the oracle user account on lbohs.sysco.no.

b. Run the configuration wizard

 /u02/oracle/products/fm1213/oracle_common/common/bin=./config.sh

c. Select the option Create a new domain, set the domain location and click on Next.
d. Mark the checkbox and click on Next

e. Specify the JDK location and click on Next
f. Specify a system component name and click on Next.

g. Modify values according to your needs and click on Next.
h. Set the node manager user and password and click on Next.

i. Click on Create
j. Click on Next

k. Click on Finish
I. Startup the node manager

```
cd /u02/oracle/config/domains/incadomain/bin
nohup ./startNodeManager.sh > nm.out&
```

m. Startup the Oracle HTTP Server

```
cd /u02/oracle/config/domains/incadomain/bin
./startComponent.sh ohsloadbalancer
```

7.2. Creating the web layer domain

In order to create the web layer domain apply the same steps shown in the previous case (load balancer domain) on these machines **ohs01.sysco.no** and **ohs02.sysco.no**. The following screen shows two relevant screens for each configuration where system component names and port are set.

ohs01.sysco.no
7.3. Applications domain

The aim of this section is to create a domain composed by an administration server and two managed servers that are part of a cluster. This section is based on the information available in [1]. In this case, the process starts in the machine weblogic01.sysco.no and these are the steps.

7.3.1. Domain creation

a. Login with the oracle user account on weblogic01.sysco.no

b. Run the configuration wizard

 /u01/oracle/products/fm1213/oracle_common/common/bin/./config.sh

c. Select the option Create a new domain, give the domain location and click on Next.
d. Select the checkbox Weblogic Coherence Cluster Extension and click on Next.

e. Select a username and password for the Administrator Account and click on Next.
f. Select the Domain Mode (in this case is Production), set the JDK path and click on Next.

g. Mark the three checkboxes and click on Next.
h. Set the Administration Server Listen Address and its Listen Port. It is important to remark that in this case that hostname (admvhost.sysco.no) represents a virtual IP in order to configure the AdminServer high availability in future steps.

i. Choose a node manager type (in this case Per Domain Default Location), set the node manager credentials and click on Next.
j. Add two managed server, these server are configured to use virtual IPs in order to configure the whole server migration further.

k. Set a name for the cluster and click on Next.
I. Assign managed servers to the cluster and click on Next.

m. Set the value for the coherence cluster port and click on Next.
n. Define three machines, the first one is the Administration Server machine and is tied to the virtual IP. In addition, there are two machines for each managed server.

o. Assign servers to machines and click on Next
p. Review the configuration and click on Create.

q. Click on Next
7.3.2. Extending the domain to create the managed server WLS_01 on weblogic01.sysco.no

Even though the domain was created on this server, it is necessary to extend the domain (using commands pack and unpack) to create the managed server (WLS_01) in a different domain directory on the same host.

Just to remember

Domain path ASERVER_HOME

/u01/oracle/config/domains/incadomain - > it was configured during the domain creation

Domain path MSERVER_HOME

/u02/oracle/config/domains/incadomain - > it is configured in this section
These are the steps to create the WLS_01 managed server

a. Login with the oracle user account on weblogic01.sysco.no

b. Create the domain directory
 mkdir -p /u02/oracle/config/domains/incadomain

c. Run the pack command to create a template

 cd ORACLE_COMMON_HOME/common/bin

 In this installation is:

 cd /u01/oracle/products/fm1213/oracle_common/common/bin

 According to [1] this the pack command

 ./pack.sh -managed=true
 -domain=ASERVER_HOME
 -template=soadomaintemplate.jar
 -template_name=soa_domain_template

 In this installation is:

 ./pack.sh -managed=true -domain=/u01/oracle/config/domains/incadomain -template=incadomaintemplate01.jar -template_name=incadomaintemplate01.jar

 In this case -domain means the directory of managed servers (/u02/oracle/…) and app_dir means the common directory applications that is shared between two machines.

d. Run the unpack command

 cd /u01/oracle/products/fm1213/oracle_common/common/bin

 ./unpack.sh -domain=/u02/oracle/config/domains/incadomain -overwrite_domain=true -template=incadomaintemplate01.jar -log_priority=DEBUG -log=unpack01.log -app_dir=/u01/oracle/config/applications/incadomain
e. Creating the boot properties file

```
mkdir -p ASERVER_HOME/servers/AdminServer/security
```

Create the boot.properties file with the Administration Server Credentials

```
username=weblogic
password=passord
```

g. Starting up the AdminServer

```
 cd /u01/oracle/config/domains/incadomain/bin
nohup ./startWeblogic.sh > wlAdminServer.out&
```

g. Test the console: http://admvhost.sysco.no:9001/console

h. Start the node manager related to the managed server (WLS_01) on weblogic01.sysco.no

```
 cd /u02/oracle/config/domains/incadomain/bin
nohup ./startNodeManager.sh > nodeManager.out&
```

It is possible to review the node manager status using the admin console.

i. Use the admin console to startup the managed server WLS_01

```
```

The server is running!
j. Shutdown all the services and make a backup of the installation before extending the domain to the server weblogic02.sysco.no

7.3.3. **Creating the cluster directory**

In section 5.2 was not possible to create the folder `/u01/oracle/config/domains/incadomain/incacluster` because the configuration wizard requires an empty directory. In this section, this directory is created and mounted within the shared storage.

a. Stop all the weblogic services running on weblogic01.sysco.no

b. Login into weblogic01.sysco.no with the root user account.

c. Create the directory

   ```bash
   mkdir /u01/oracle/config/domains/incadomain/incacluster
   ```

d. Take a backup of the file `/etc/fstab`

e. Modify the file `/etc/fstab` to include the cluster shared storage (with the root user account)

f. Run this command (with the root user account)

   ```bash
   mount -a
   ```

g. After running the `df` command, it is possible to see the new shared storage
7.3.4. **Extending the domain to create the managed server WLS_02 on weblogic02.sysco.no**

It is necessary to extend the domain (using commands pack and unpack) to create the managed server (WLS_02) in a different host.

Just to remember

Domain path **ASERVER_HOME** in this case is:

```
/u01/oracle/config/domains/incadomain
```

- it was configured during the domain creation on weblogic01.sysco.no

Domain path **MSERVER_HOME** in this case is

```
/u02/oracle/config/domains/incadomain
```

- it is configured in this section on weblogic02.sysco.no

These are the steps to create the WLS_02 managed server

a. Login with the oracle user account on **weblogic02.sysco.no**

b. Create the domain directory

```
mkdir -p /u02/oracle/config/domains/incadomain
```

c. Run the pack command on weblogic01.sysco.no

```
./pack.sh -managed=true -domain=/u01/oracle/config/domains/incadomain -template=incadomaintemplate02.jar -template_name=inca_domain_template
```

d. Copy incadomaintemplate02.jar into **weblogic02.sysco.no**

e. Run the unpack command

```
cd /u01/oracle/products/fm1213/oracle_common/common/bin

./unpack.sh -domain=/u02/oracle/config/domains/incadomain -overwrite_domain=true -template=incadomaintemplate02.jar -log_priority=DEBUG -log=unpack02.log -app_dir=/u01/oracle/config/applications/incadomain
```
f. Start the node manager related to the managed server on weblogic02.sysco.no

```bash
cd /u02/oracle/config/domains/incadomain/bin
nohup ./startNodeManager.sh > nodeManager.out&
```

It is possible to review the node manager status using the admin console.

![Node Manager Status](image)

Version: 12.1.3

Status:

- **Node Manager Status:**
 - Current status of the Node Manager
 - More Info...

Notes:

- This page allows you to view current status information for the Node Manager instance configured for this machine.

![Admin Console](image)

Servers (Filtered - More Columns Exist):

<table>
<thead>
<tr>
<th>Start</th>
<th>Resume</th>
<th>Suspend</th>
<th>Shutdown</th>
<th>Restart SSL</th>
<th>Showing 1 to 3 of 3</th>
<th>Previous</th>
<th>Next</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Server:** ADMIN
- **Machine:** ADMINHOST
- **State:** RUNNING
- **Status of Last Action:** None

- **Server:** WLS_01
- **Machine:** WLSHOST
- **State:** RUNNING
- **Status of Last Action:** TASK COMPLETED

- **Server:** WLS_02
- **Machine:** WLSHOST
- **State:** RUNNING
- **Status of Last Action:** TASK COMPLETED

g. Use the admin console to startup the managed server WLS_02

![Admin Console](image)

h. Shutdown all the services and make a backup of the installation

8. **Configuring the load balancer**

In this section, one of the Oracle HTTP Server installations (lbohs.sysco.no) is configured as a load balancer. Two virtual addresses have been created to use the load balancer, these are:

<table>
<thead>
<tr>
<th>Machine</th>
<th>Virtual IP</th>
<th>Virtual host name</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>lbohs.sysco.no</td>
<td>192.180.56.20</td>
<td>admin12c.sysco.no</td>
<td>Administration server requests</td>
</tr>
<tr>
<td>lbohs.sysco.no</td>
<td>192.180.56.21</td>
<td>app12c.sysco.no</td>
<td>Applications requests</td>
</tr>
</tbody>
</table>

These addresses will be configured as virtual hosts in the Oracle HTTP Server installed in lbohs.sysco.no. In addition, each virtual host will have a cluster to redirect requests towards instances ohs01 and ohs02. Furthermore, virtual hosts to direct the traffic from instances osh01 and osh02 to the AdminServer and managed server will be created. The following graph depicts the configuration.
In order to create the configuration shown in the previous picture, follow these steps.

a. Login into the server lbohs.sysco.no with the oracle user.
b. Create this file

```bash
cd /u02/oracle/config/domains/incadomain/config/fmwconfig/components/OHS/instances/ohsloadbalancer/moduleconf
touch loadbalancer.conf
```
c. Add this configuration to the file

```xml
<VirtualHost appl2c.sysco.no:443>
    ProxyRequests off
    ServerName appl2cLBOHS
    <IfModule openssl_module>
        SSLEngine on
        SSLProtocol nzos_Version_1_0 nzos_Version_3_0 With_2_0_Hello nzos_Version_3_0
        SSLCipherSuite
        SSL_RSA_WITH_RC4_128_MD5,SSL_RSA_WITH_RC4_128_SHA,SSL_RSA_WITH_3DES_EDE_CBC_SHA,SSL_RSA_WITH_DES_CBC_SHA,TLS_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_256_CBC_SHA
        SSLVerifyClient none
        SSLWallet
        "${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_TYPE}/instances/${COMPONENT_NAME}/keystores/default"
        SSLCRLCheck Off
    </IfModule>

    <Proxy balancer://ClusterApp>
</Proxy>
```

```xml
<Proxy balancer://ClusterApp>
</Proxy>
```
WebHead1

BalancerMember http://ohs01.sysco.no:7778
BalancerMember http://ohs02.sysco.no:7778

Security "technically we aren't blocking anyone but this the place to make those changes"
Order Deny, Allow
Deny from none
Allow from all

Load Balancer Settings
We will be configuring a simple Round Robin style load balancer. This means that all webheads take an equal share of the load.
ProxySet lbmethod=byrequests

</Proxy>

balancer-manager
This tool is built into the mod_proxy_balancer module and will allow you to do some simple modifications to the balanced group via a gui web interface.
<Location /balancer-manager>
 SetHandler balancer-manager

 # I recommend locking this one down to your office
 Order deny, allow
 Allow from all
</Location>

Point of Balance
This setting will allow to explicitly name the location in the site that we want to be balanced, in this example we will balance "/" or everything in the site.
ProxyPass /balancer://ClusterApp/

</VirtualHost>

<VirtualHost admin12c.sysco.no:80>
ProxyRequests off

ServerName Admin12cLBOHS

<Proxy balancer://ClusterAdmin>
 # WebHead1
 BalancerMember http://ohs01.sysco.no:7777
 BalancerMember http://ohs02.sysco.no:7777

 # Security "technically we aren't blocking anyone but this the place to make those changes"
</Proxy>
chages
Order Deny,Allow
Deny from none
Allow from all

Load Balancer Settings
We will be configuring a simple Round Robin style load balancer. This means
that all webheads take an equal share of
of the load.
ProxySet lbmethod=byrequests

</Proxy>

balancer-manager
This tool is built into the mod_proxy_balancer
module and will allow you to do some simple
modifications to the balanced group via a gui
web interface.
<Location /balancer-manager>
SetHandler balancer-manager

I recommend locking this one down to your
your office
Order deny,allow
Allow from all
</Location>

Point of Balance
This setting will allow to explicitly name the
the location in the site that we want to be
balanced, in this example we will balance "/"
or everything in the site.
ProxyPass /balancer-manager /
ProxyPass / balancer://ClusterAdmin/

<IfModule ossl_module>
SSLEngine off
</IfModule>

</VirtualHost>

d. The previous configuration uses ports 80 and 443 so we have to activate these ports. Before changing ports, use these articles to apply a patch and to set privileges to start the service in privileged ports.

IMPORTANT:

OHS 12c Fails to Start With the Error "Permission denied: make_sock: could not bind to address" on Linux6 (Doc ID 1599750.1)
http://docs.oracle.com/middleware/1213/webtier/HSADM/getstart.htm#HSADM848 [Starting Oracle HTTP Server Instances on a Privileged Port (UNIX Only)]
e. Changing ports

```
cd /u02/oracle/config/domains/incadomain/config/fmwconfig/components/OHS/instances/ohsloadbalancer/moduleconf
vi httpd.conf
```

```
# Listen: Allows you to bind Apache to specific IP addresses and/or ports, instead of the default. See also the <VirtualHost> directive.
# Change this to Listen on specific IP addresses as shown below to prevent Apache from glooming onto all bound IP addresses (0.0.0.0)
# The Listen directive below has a comment following it that is used at OHS provisioning time.
# The below comment can be deleted from the file in an OHS instance, but *DO NOT* delete the comment at $PRODUCT_HOME/templates/conf/httpd.conf
Listen 7777  40 LISTEN_PORT
Listen 90
Listen 443
```

f. Start the Oracle Http Server on lbohs.sysco.no with these commands.

```
cd /u02/oracle/config/domains/incadomain/bin
nohup ./startNodeManager.sh > nm.out&
cd /u02/oracle/config/domains/incadomain/bin
./startComponent.sh [INSTANCE_NAME] (For example ohsloadbalancer or ohs01)
```

g. Test the port 80

```
Oracle HTTP Server 12c
```

```
Oracle HTTP Server 12c is based on the proven, open source Apache HTTP Server technology and provides the framework for pages and for front-ending Oracle Fusion Middleware Applications.
```

Obviously, the OHS services on ohs01.sysco.no and ohs02.sysco.no are up and listening to requests on port 7777.

9. **Configuring virtual hosts on ohs01 and ohs02 instance**
 In the section two virtual hosts are configured, they will use the same IP (physical IP) and different port according to this table.
These are the steps to create these virtual hosts.

a. Login into the server ohs01.sysco.no with the oracle user.

b. Create these files

```bash
cd /u02/oracle/config/domains/incadomain/config/fmwconfig/components/OHS/instances/ohs01/moduleconf
touch admVhost.conf
touch appVhost.conf
```

c. Configure these files as is shown in the following pictures

admVhost.conf

```text
<VirtualHost ohs01.sysco.no:7777>
  ServerName admin2cVirtualHost
  ServerAdmin example@example.com
  RewriteEngine On
  RewriteOptions inherit

  <Location /console>
  SetHandler weblogic-handler
  WeblogicHost admvhost.sysco.no
  WeblogicPort 9001
  </Location>

  <Location /consolehelp>
  SetHandler weblogic-handler
  WeblogicHost admvhost.sysco.no
  WeblogicPort 9001
  </Location>

</VirtualHost>
```

appVhost.conf

```text
<VirtualHost ohs01.sysco.no:7778>
  ServerName app12cVirtualHost
  ServerAdmin example@example.com
  RewriteEngine On
  RewriteOptions inherit

</VirtualHost>
```

d. Modify the httpd.conf to add the port 7778
h. Start the Oracle Http Server on ohs01.sysco.no with these commands.

```
cd /u02/oracle/config/domains/incadomain/bin
nohup ./startNodeManager.sh > nm.out&

cd /u02/oracle/config/domains/incadomain/bin
./startComponent.sh [INSTANCE_NAME] (For example ohsloadbalancer or ohs01)
```

i. Test the applications URL from the load balancer

![Oracle HTTP Server 12c](image)

j. Copy the following files from ohs01.sysco.no to ohs02.sysco.no and modify the remarked values

`admVhost.conf`
appVhost.conf

k. Modify the httpd.conf (on the server ohs02.sysco.no) to add the port 7778

```
Listen 7778
# Dynamic Shared Object (DSO) Support
# To be able to use the functionality of
# have to place corresponding `LoadModule`
# directives contained in it are actual
# Statically compiled modules (those li
# to be loaded here.
# Example:
# LoadModule foo_module "${PRODUCT_HOME
```

l. Start the Oracle HTTP Server on ohs02.sysco.no with these commands.

```
cd /u02/oracle/config/domains/incadomain/bin
nohup ./startNodeManager.sh > nm.out&
cd /u02/oracle/config/domains/incadomain/bin
./startComponent.sh [INSTANCE_NAME] (For example ohsloadbalancer or ohs01)
```
m. Shutdown the server ohs01.syco.no and test URLs from the load balancer. In this case it works.

10. **Configuring the frontend host and the frontend http port**
Configure the frontend host and the frontend http port the cluster and for the AdminServer in order to use those ports configured in the load balancer.

10.1. **Configuring the cluster WLCluster_01**
Follow these steps

a. Login into the AdminServer with this URL: http://admin12c.sysco.no/console

b. The system will redirect the request towards one of the Oracle HTTP Servers.

![Configuration for AdminServer](image1)

The following steps will avoid this kind of redirection

c. Click on WLCluster_01 as can be seen in the picture

![Customize this Table](image2)

d. Click on HTTP tab

![HTTP Tab Configuration](image3)

e. Set the following values and click on save
10.2. Configuring the AdminServer

Follow these steps

a. Click on AdminServer

b. Click on Protocols

c. Click on HTTP

d. Set the following values and click on Save
e. Log out of the Amin Console and log in again. Now the address used by the Admin Console is that defined on the load balancer.

11. Testing the Administration Server high availability
With the previous a high available architecture was create according to the Oracle recommendations. Therefore, this architecture can be used to show how to start the admin serve in another machine. In this way, a contingency server is used in case the Admin Server machine has problems. It is important to remark that this work is possible because the Admin Server domain was created on a shared storage and it is using virtual IPs.

This is the relevant information for this testing:

Virtual IPs

<table>
<thead>
<tr>
<th>Machine</th>
<th>Virtual IP</th>
<th>Virtual host name</th>
<th>Weblogic server</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>weblogic01.sysco.no</td>
<td>192.180.56.10</td>
<td>admvhost.sysco.no</td>
<td>AdminServer</td>
<td>Administration server</td>
</tr>
<tr>
<td>weblogic01.sysco.no</td>
<td>192.180.56.11</td>
<td>ms01vhost.sysco.no</td>
<td>WLS_01</td>
<td>Managed server 01</td>
</tr>
<tr>
<td>weblogic02.sysco.no</td>
<td>192.180.56.12</td>
<td>ms02vhost.sysco.no</td>
<td>WLS_02</td>
<td>Managed server 02</td>
</tr>
</tbody>
</table>

File system

<table>
<thead>
<tr>
<th>File System</th>
<th>MACHINE</th>
<th>DESCRIPTION</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>fsbinaries01</td>
<td>weblogic01</td>
<td>Products</td>
<td>Products binary files</td>
</tr>
<tr>
<td>fsms01</td>
<td>weblogic01</td>
<td>Config</td>
<td>Managed Server</td>
</tr>
<tr>
<td>fsbinaries02</td>
<td>weblogic02</td>
<td>Products</td>
<td>Products binary files</td>
</tr>
</tbody>
</table>
The following steps show how to do this configuration:

a. Review that the Weblogic Admin server is running.

As can be seen, the server is running on `weblogic01.sysco.no`.

b. Shutdown the virtual machine `weblogic01.sysco.no`.

c. Test the Admin Server, the following picture shows that now it is not working.
Failure of Web Server bridge:

No backend server available for connection: timed out after 10 seconds or idempotent set idempotent.

d. Configure the virtual IP **192.180.56.10** on the server weblogic02.sysco.no using the root user account

```
[root@weblogic02 ~]# ifconfig eth0:2 192.180.56.10
```

e. Make a backup of the file `/etc/fstab`

f. Add the following line in the file `/etc/fstab` using the root user account

```
syfs /sys  sysfs defaults 0 0
proc /proc  proc defaults 0 0
storagehost:sysco.no/export/fabriker02/no/vidc/products nfs4 rw,dir硬,hard,mnttr,proto=udp
```

g. Run the following command using the root user account

```
mount -a
```

h. Start the Admin Server using the oracle user account

```
[oracle@weblogic02 bin]$ cd /u01/oracle/config/domains/inscdomain/bin
[oracle@weblogic02 bin]$ nohup ./startWeblogic.sh > w1AdminLog.out &
```

i. The log file shows the server is running
j. Test the Admin Console again

As can be seen in the previous picture, the Admin Console is working again, but on other server.

12. **Conclusions**

This document shows a comprehensive process to construct an architecture with high availability that demonstrates how useful is in order to do tasks such as the recovery of the Administration Server in other machine. Even though, the whole server migration of managed servers is not configured in this guide, the architecture is ready to apply this configuration because of the use of virtual IPs and shared storages. In fact the directories that allow this work are also create. For example, the path /u01/oracle/config/domains/incadomain/incaccluster is created to store the JMS and TLOG files. This document can be used to learn how to do this configuration and to apply this knowledge to other cases such SOA and OSB.

13. **References list**

