
Class Loading Conflicts in JVM

This guide shows how to analyze and avoid potential problems caused by class loading conflicts. The content is

structured in the following sections, the first one gives a little introduction to the Classloader model in Weblogic [1],

following the installation of Classloader Analysis Tool (CAT) [1] is shown and then two examples that shows the use of

CAT on a real application is presented.

Class loading in Weblogic

Summarizing the class loading process in just some lines is hard so in this guide the focus is talking about hierarchies

and the delegation model.

Concept Definition

Hierarchies The classloader in an application server such as Weblogic is based on the model defined by the JVM, which means a

hierarchical model that on Weblogic is organized as a tree with these levels: bootstrap class loader, extension class loader,

system classpath classloader, application specific classloaders (this includes Weblogic server) [1].

In the previous tree, bootstrap class loader is the root and application specific classloaders are the leaves [1].

Delegation model A common question that arises when Java application servers are used is why is my application using the wrong class? This

is because the delegation model, which states “The classloader implementation first checks its cache to see if the requested

class has already been loaded. This class verification improves performance in that its cached memory copy is used instead of

repeated loading of a class from disk. If the class is not found in its cache, the current classloader asks its parent for the class.

Only if the parent cannot load the class does the classloader attempt to load the class. If a class exists in both the parent and

child classloaders, the parent version is loaded” [1]

The following picture depicts this hierarchy of classloaders.

Bootstrap class
loader
[Root]

Java Classloader HierarchyJava Classloader Hierarchy

Java Virtual
Machine

Creates

Extension class
loader

Extends

System classpath
classloader

Extends

Loads in memory Java Development
Kit (JDK) internal classes and java.*
packages that belong to the JVM

Loads in memory Java Development
Kit (JDK) internal classes and java.*
packages that belong to the JVM

Loads in memory any JAR placed in
the JDK’s extension directory.

Loads in memory any JAR placed in
the JDK’s extension directory.

Loads in memory the classes
brought by the application (EAR,
War file)

Loads in memory the classes
brought by the application (EAR,
War file)

Application specific
classloaders (this
includes Weblogic

server)
[Leaves]

Extends

Loads in memory the classes from
the classpath of the JVM.

Loads in memory the classes from
the classpath of the JVM.

The hierarchy of classloaders in Java

In the previous figure let us say one application specific classloader wants to load a class so the following diagram depicts this process

In the previous diagram is possible to see that because of the delegation process even if the application specific classloader has the requested class, this

will be loaded by a superior classloaders in the hierarchy if the class exists on one of the superior levels otherwise the class is loaded by the application

specific classloader.

How could we subvert the previous process?

Of course, there are ways to subvert this process to allow us using our own libraries as is described in the following table.

Way to subvert the

process

Definition Advantages Disadvantages

prefer-web-inf-

classes Element

“If true, classes

located in the WEB-

INF directory of a

web-app will be

loaded in preference

to classes loaded in

the application or

system classloader”

[1]

 This is the easiest way to subvert the delegation
model to use your own classes.

 With this you can include some
undesirable classes that are part of the
library because a library can include many
packages and classes so you should know
the library thoroughly before subverting
the delegation model in this way.

 This is prone to be affected by new bugs
introduced on latest version of JVMs as can
be seen in these two bugs [3] and [4].

 Sometimes can be unpredictable as can be
seen in the second example shown below
on this document.

Using a Filtering

ClassLoader

This is mechanism to

use third party

libraries telling the

class loader which

packages are going to

be loaded by the

application

classloader rather

than the system

classloader [1].

 The implementation could be a little difficult
because each needed package should be
mentioned specifically.

 The risk of including specific undesirable classes is
minimized because it specifies packages instead of
the whole jar.

 It looks more stable to face possible bugs since
even is recommended as a work around for the bug
described in [4]

 The implementation can be tricky because
we have to provide details about each
package we want our application to use.

 It has been used here to fix a problem that is
described in the second example shown below
on this document.

Installing Classloader Analysis Tool (CAT)

This are the steps to install CAT, which is a file called wls-cat.war located on $WL_HOME/server/lib/wls-cat.war

1. After login into the console with an admin user, lock the console to edit and click on Install

2. Look for the application $WL_HOME/server/lib/wls-cat.war and click on Next.

3. Choose the remarked radio button and click on Next

4. Choose the cluster and click on Next

5. Choose the remarked option and click on Next

6. Select the remarked option and click on Finish

7. Click on Activate Changes

8. Go to Deployments > Control and start the application

9. Test the application using the listen address and the port assigned to each managed server inside the cluster. The application will request a user

and you should user the Weblogic user, after login this is the main page of CAT.

Using CAT to analyze class conflict

In this section two examples related to class conflicts are show.

Example 1

The application CAT identifies class conflicts

As an example we can analyse oracle.jdbc.* to be specific the class called oracle.jdbc.connector.OracleLocalTransaction as can be seen in the following

report generated by CAT.

Resource: oracle.jdbc.connector.OracleLocalTransaction

Checksum: 1f8d1e637d6813c0d486ff626c60f1d2
Load Location: jar:file: $WL_HOME/oracle_common/modules/oracle.jdbc/ojdbc7.jar!/oracle/jdbc/connector/OracleLocalTransaction.class
Classloader Type: com.oracle.classloader.weblogic.LaunchClassLoader
Classloader Hash Code: 572145572
Classloader Search Order: 318781939 ->572145572
Alternative Locations:

$DOMAIN_HOME/servers/ServerExample/tmp/_WL_user/yyy.xxx.war/2eqtxp/war/WEB-INF/lib/ojdbc7-

12.1.0.2.0.jar!/oracle/jdbc/connector/OracleLocalTransaction.class

In the previous figure two class loaders are identified: 318781939 ->572145572, which means both have the class, but only one of them loads the class.

According to the previous report, this class can be loaded from two locations.

Location:

jar:file: $WL_HOME/oracle_common/modules/oracle.jdbc/ojdbc7.jar!/oracle/jdbc/connector/OracleLocalTransaction.class

Alternative Locations:

$DOMAIN_HOME/servers/ServerExample/tmp/_WL_user/yyy.xxx.war /2eqtxp/war/WEB-INF/lib/ojdbc7-

12.1.0.2.0.jar!/oracle/jdbc/connector/OracleLocalTransaction.class

The following figure shows the JDBC library inside the application called yyy.xxx.war. Thus, one question is why does the application need a library

that is provided by the application server?

http://10.158.40.121:8201/wls-cat/index.jsp?app=cba.agent.war&resource=oracle.jdbc.connector.OracleLocalTransaction&module=cba.agent.war&classloader=572145572&action=loadedclasses
http://10.158.40.121:8201/wls-cat/index.jsp?app=cba.agent.war&resource=oracle.jdbc.connector.OracleLocalTransaction&module=cba.agent.war&classloader=318781939&action=loadedclasses
http://10.158.40.121:8201/wls-cat/index.jsp?app=cba.agent.war&resource=oracle.jdbc.connector.OracleLocalTransaction&module=cba.agent.war&classloader=572145572&action=loadedclasses
http://10.158.40.121:8201/wls-cat/index.jsp?app=cba.agent.war&resource=oracle.jdbc.connector.OracleLocalTransaction&module=cba.agent.war&classloader=318781939&action=loadedclasses
http://10.158.40.121:8201/wls-cat/index.jsp?app=cba.agent.war&resource=oracle.jdbc.connector.OracleLocalTransaction&module=cba.agent.war&classloader=572145572&action=loadedclasses

It is possible to see the application does not define any filter to use the library from the application instead of the Weblogic library.

This can be confirmed after reading the Weblogic.xml file

In cases like this, the recommendation is to get rid of JAR files that do not make sense for the application since the application is using the one provided

by the application server.

Example 2

The following case shows that even when the tag <prefer-web-inf-classes>true</prefer-web-inf-classes> is used there could be some problems such

as:

According to the developer this was impossible because the application was using this

With CAT it was possible to see a big number of conflicts

Using CAT to see the conflicts, the Weblogic.xml was modified and now it looks like this:

The previous filter can be seen using CAT

Moreover, the number of conflicts was reduced

Therefore, in cases like this using a filter within the Weblogic.xml file is better than using the tag <prefer-web-inf-classes>true</prefer-web-inf-classes>

Conclusion

At least there are two ways to solve this kind of conflicts deleting JAR files that are not used by the application or filtering classes through the

Weblogic.xml file where a filter is recommended as can be seen in the second case described in this document and in the bug described by Oracle in [4]

References list

[1] Oracle (2015) Using the Classloader Analysis Tool (CAT) [Online document] Available from:

https://docs.oracle.com/middleware/1213/wls/WLPRG/classloading.htm (Accessed on: 23/01/2018)

[2] Oracle (n.d.) Java Virtual Machine Specification [Online document] Available from: https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-

5.html (Accessed on: 25/01/2018)

[3] Oracle (2017) JDK1.8 ClassLoader Doesn't Load META-INF/services/* From Libraries In WEB-INF/lib With prefer-web-inf-classes=true (Doc ID

2229218.1) [Online document] Available from:

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=524837554942480&id=2229218.1&_adf.ctrl-state=ab6oaidok_126 (Accessed

on: 25/01/2018)

[4] Oracle (2017) Log4j Initialization Error in WebServices Deploy With prefer-web-inf-classes=true (Doc ID 2266334.1) [Online document]

Available from:

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=525271175379472&id=2266334.1&displayIndex=1&_afrWindowMo

de=0&_adf.ctrl-state=ab6oaidok_228#SYMPTOM (Accessed on: 25/01/2018)

https://docs.oracle.com/middleware/1213/wls/WLPRG/classloading.htm
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-5.html
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-5.html
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=524837554942480&id=2229218.1&_adf.ctrl-state=ab6oaidok_126
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=525271175379472&id=2266334.1&displayIndex=1&_afrWindowMode=0&_adf.ctrl-state=ab6oaidok_228#SYMPTOM
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=525271175379472&id=2266334.1&displayIndex=1&_afrWindowMode=0&_adf.ctrl-state=ab6oaidok_228#SYMPTOM

