
Using JMX to Monitor Oracle Weblogic Partitions

1. Introduction

In this document a monitor is created using JMX. This monitor is made to show the performance

of a Data Source, which is deployed on a partition. Thus, MBeans are used not only to discover

managed servers, but also to show partitions. In addition, as the main goal is to show the connection

pool’s runtime state (do not forget data sources belong to partitions) MBeans are also used to

discover the resource groups related to each partition. Furthermore, the program includes a class

that generates JDBC connection leaks to demonstrate how to monitor this kind of problems.

In order to avoid any confusion related to matters such as partitions, MBeans, JMX and JDBC,

some concepts are shown in the following section. After that, the code source of the program is

explained in detail to conclude with some screens of the GUI developed.

2. Concepts

a. Java Management Extension (JMX). It is a framework that was created by Sun in order

to manage applications and devices. One of the main advantages of JMX is its capacity of

going through different layers of an architecture without modifying the original code. With

this in mind, JMX does not have problems to work on different operating systems and

networking protocols (Jiang, H. et al., 2010). This definition given by Jiang, H et al. (2010)

makes sense since JMX is developed on Java so it leverages the language portability.

b. MBean. The previous point states that JMX is a framework to administer applications and

devices. Thus, it is necessary a component, which exposes the properties and states of

applications, devices and in this case application servers. This component is called MBean

and in addition, it allows the reconfiguration of application server’s properties (Mazanatti

N. et al., 2013)

c. Domain. A domain is a logical structure that includes machines, servers, clusters,

resources, etc. It means a domain includes every component from a Weblogic Server.

According to Schildmeijer, M (2011) a domain is the most important administrative unit

and at least has an Administration Server.

d. Partition. This is one of the new concepts introduced by Oracle in Weblogic 12.2.1 as part

of the multitenant architecture. A partition is a kind of micro container that allows splitting

a domain into several independent parts called partitions. Of course, a partition is only a

part from the new architecture, which includes other matters such as virtual targets,

resource groups, etc. According to Oracle (2016) as cited by Castillo R. (2016) “…a

partition is an administrative and runtime unit that is equivalent to a portion of a domain,

which is used to run applications and their resources.”

e. Virtual targets. A virtual target defines two important things, a target pointed by resource

groups at the partition or domain level and a HTTP server used by each target (Oracle,

2016) as cited by Castillo R. (2016).

f. Resource group. A resource group is a logical way to organize resources and applications

according to their use, environment or any criteria defined by a business. For example, it

is possible to organize environments such as development and testing using resource

groups to isolate applications and resources. If you have several modules such as orders,

financial risk, fulfilments and so on, resource groups allows you to organize applications

and resources that before were scattered.

g. Data source and connection pools. Data sources are interfaces between applications and

databases that allow developers to forget about database’s technical details. Data sources

are implemented using Java Database Connectivity (JDBC) and defines a dynamic set of

connections to the database. In addition, data sources are used by applications through Java

Naming and Directory Interface (JNDI) (Schildmeijer, M, 2011).

Connection pools are sets of connections to the database that could be increased and

decreased dynamically. Since connecting applications with the database is an expensive

operation, connection pools represents an advantage because they can be reused avoiding

the connections creation on demand (Schildmeijer, M, 2011).

h. JDBC connection leaks. After a connection from the connection pool is used by an

application, this connection (logical connection) is closed and then the connection (the

physical one) is returned to the connection pool to be reused. However, when an application

does not implement the close method properly, physical connections are not released. Thus,

over the time the connection pool will not have physical connections to manage the

applications demands. This problem is known as JDBC connection leak and could cause

the crash of managed servers (Castillo, R., 2015). Therefore, giving ways to monitor this

problem is a relevant matter.

i. Topology used, the topology used in this post is depicted by figure 1.

Figure 1. Source: Castillo, R (2016)

3. Source code explanation

The program developed in this post establishes a connection with the Weblogic server domain

to show severs, partitions and data sources that belong to those partitions. In addition, data

sources detected are used to generate a JDBC connection leak. This is the GUI used in this

demonstration.

Figure 2. GUI created for this demonstration

The GUI shown in figure 2 shows three sections

 Connection information. In this section parameters used to connect to the Weblogic

server such as protocol, URL, port, user and password are given by the user. After

clicking the “Connect” button, the “Leak Generation” section is filled.

 Leak Generation. This section allows users to select severs partitions and the data

source that belongs to this combination of servers and partitions. In addition, here it is

possible to set the number of connection leaks user wants to generate.

 Monitoring. Using the button “Refresh” it is possible to monitor the main indicators

that belong to the data source under investigation. For example, in figure 2 it is possible

to see the state of data source “jdbc/Apex” is equal to Running.

Following each class is explained.

Class JMXConnection

 Definition: Class used to establish the connection with the weblogic domain.

 Constructor: This class has a constructor that receives and initializes all the connection

parameters needed to establish a connection with the Weblogic domain.

 Methods

 public MBeanServerConnection getConnection()

This method establishes the connection with the Weblogic domain and returns

an MBeanServerConnection object that is used during the program execution

to access to Weblogic servers (Administrator and managed servers) and other

resources.

It is important to remark that in this case the string

“weblogic.management.mbeanservers.domainruntime” is used. It is the same

as using this command on WLST.

Class ServerMonitoring

 Definition: Class used to get the list of servers (Admin and managed) in a domain.

The MBean defined by this string:

"com.bea:Name=DomainRuntimeService,Type=weblogic.management.mbeanservers

.domainruntime.DomainRuntimeServiceMBean"

Could be also analysed using WLST as is shown in this picture.

 Methods

 public ObjectName [] getListServers(MBeanServerConnection

connection)

This method receives the connection object in order to get the list of server. To

do this, the method used the MBean defined by the concatenation of variables

called combea and service.

Class PartitionMonitoring

 Definition: Class used to get the list of partitions related to a server.

 Methods

 Public ObjectName [] getListPartition (String serverName,

MBeanServerConnection connection)

This method receives the server name and returns the list of partitions,

which belong to the server.

This is the MBean used opened from WLST

Class JDBCMonitoring

 Definition: Class used to get the list of data sources per server and partition and to

show the main runtime indicators that belong to the data source.

 Methods

 public void refreshAttributes(MBeanServerConnection

connection, ObjectName dataSourceName)

This method receives the connection object and the data source name to read its

runtime indicators.

 public ObjectName [] getListDS(String serverName,

MBeanServerConnection connection)

This method receives the server name and the connection to the Weblogic

server to get the list of data sources that belong to the domain.

This is the MBean used opened from WLST.

 public ObjectName [] getListDS(String serverName, String

partitionName, MBeanServerConnection connection)

This method receives the server name, the partition name and the connection to

the Weblogic server to get the list of data sources that belong to the partition.

This is the MBean used opened from WLST

 public String getJNDINames(String dataSourceName, String

domainName, MBeanServerConnection connection)

As this program is also used to generate JDBC connection leaks, it is

necessary to know the JNDI name associated to each data source in

order to get a connection. This method gets the JNDI name based on

the data source name, the domain name and the connection object. Of

course, the user does not need to enter the domain name.

This is the MBean used opened from WLST

 public String getJNDINames(String dataSourceName, String

domainName, String partitionName, MBeanServerConnection

connection)

This method gets the JNDI name based on the data source name, the

domain name, the partition name and the connection object. Of course,

the user does not need to enter the domain name.

This is the MBean used opened from WLST

Class DBConnection

 Definition: Class used to generate JDBC connection leaks on a data source that is

received as a parameter.

 Constructor: The constructor receives the provider’s URL to establish the connection

with the database. In the case of partitions the provider’s URL has this format:

t3://ms01vhost122.sysco.no:9003/partitions/PartitionDevelopment

 Methods

 public void establishConnection(String dataSourceName)

This method receives the dataSourceName and stablishes the

connection against the database. Connections are not closed on

purpose to generate the JDBC connection leak.

4. Demonstration

In this demonstration, the application is used to generate JDBC connection leaks on the

Weblogic partition. First, the connection pool configuration is detailed.

The initial capacity, maximum capacity and minimum capacity of data source called

jdbc/Apex is set on 20.

The property remove infected connection is disabled. Currently it is enabled by default.

The parameter Inactive Connection Timeout is set on 30s. It is too short, but it is useful for a

demonstration.

Now it is time to execute the program.

Figure 3

As can be seen in figure 3 even though 30 connections were used and the capacity of the data

source is equal to 20, there are 15 busy connections and 5 available connections so the question

is why? It happens because the provider URL used to connect to the database includes the

partition information, i.e. t3://ms01vhost122.sysco.no:9003/partitions/PartitionDevelopment

and the partition uses a virtual target that is deployed on a cluster. Thus, the connections are

balanced between two servers (15 connections per server) that are part of the cluster.

In addition, figure 4 shows the connections were released after 30 seconds to prevent the

connection leak.

Figure 4

However, there is a problem because the number of connections leaks detected by our

programs was not updated as is shown in figure 6.

Figure 6

Does the program have a problem? It seems to be the answer is not because even though the

log file shows the server has had released connections, the administrative console does not

show any evidence about the number of leak connections as can be seen in figure 7.

Figure 7

Conclusions. This post has shown how to connect to the Weblogic server using some Java

classes. It is important to remark that this demonstration could be used as a base to generate

more classes in order to monitor more server’s components. It would be interesting for

customers who do not have any kind of monitoring system at the application server level. What

is more, partitions were used demonstrating that using JMX on partitions is a simple process.

Last but not least, it seems to be there is a problem with the MBean that shows the information

about connection leaks because it did not work as is expected.

5. References list

Jiang, H, Hai, L, Wang, N, & Di, R 2010, 'A performance monitoring solution for distributed

application system based on JMX', Proceedings - 9Th International Conference On Grid And

Cloud Computing, GCC 2010, Proceedings - 9th International Conference on Grid and Cloud

Computing, GCC 2010, p. 124-127, Scopus®, EBSCOhost, viewed 18 February 2016.

Mazanatti Nunes, William Markito Oliveira, Fabio. Getting Started with Oracle WebLogic

Server 12c: Developer’s Guide. Birmingham, GBR: Packt Publishing Ltd, 2013. ProQuest

ebrary. Web. 18 February 2016.

Schildmeijer, M 2011, Oracle Weblogic Server 11G PS2 Administration Essentials.

[Electronic Book] : Install, Configure, Deploy, And Administer Java EE Applications With

Oracle Weblogic Server, n.p.: Birmingham, UK : Packt Pub., 2011., University of Liverpool

Catalogue, EBSCOhost, viewed 19 February 2016.

Castillo R. (2016) Weblogic Multitenant [Online document] Available from:

http://blog.sysco.no/multitenant,/platform/as/a/service/Multitenant/ (Accessed: 19 February

2016)

Castillo R. (2015) JDBC Connection leaks – Generation and Detection [BEA-001153]

[Online document] Available from: http://blog.sysco.no/db/locking/jdbc-leak/ (Accessed: 19

February 2016)

http://blog.sysco.no/multitenant,/platform/as/a/service/Multitenant/
http://blog.sysco.no/db/locking/jdbc-leak/

