
Created by: Raúl Castillo

Using linear regression to detect memory leaks

The aim of this document is to talk about one of the most important problems that affect

application servers based on the Java Virtual Machine, memory leaks. In order to have a

detailed explanation of this phenomenon, you could review [1]. According to this reference:

“…a memory leak belongs to a class of situations called software aging problems. Software

aging defines the loss of performance over the time because of the gradual accumulation of

little problems. Other term within this kind of problem is the rejuvenation process. For

example, rejuvenation happens when the system has to be restarted in order to free the

memory accumulated by a Java Virtual Machine (JVM) process after a period of time…”

Based on the experience dealing with these kinds of problems, it would be interesting to use

software to monitor the garbage collector in order to recognize the memory leak’s symptoms

in advance. In this way, a system administrator could program a restart process (rejuvenation)

avoiding a crash. Of course there are systems that could execute tasks like these, but many

times they are not used (this affirmation is based on the author’s experience) because of the

cost of licenses and the lack of experience.

Therefore, in the following lines a demonstration about how to use Java, JMX and linear

regression to detect memory leaks will be presented.

An important fact from a previous post
In [1] an important picture was included, this picture shows that if the Java Virtual Machine is

affected by a memory leak problem, the full garbage collector will not free enough memory

from the heap.

Source: [1]

Based on this observation, monitoring the activity of the full garbage collector and analysing

its trends over the time could be useful to detect memory leaks.

https://pe.linkedin.com/pub/raul-castillo/42/606/848

Created by: Raúl Castillo

The elements needed to construct the monitor
In order to construct this monitor it is necessary to detect the Garbage Collection execution,

save the data about the execution, create a time series and analyse it to detect some trends and

features.

 Monitoring the garbage collector. In order to monitor the garbage collector two ways

arise. The first is reading the JVM memory consumption and the number of

collections executed based on a period. The second one is installing a listener on the

JVM that notifies each garbage collection event to a Java client, this way was selected

and the code recommended by [2] was used.

 The time series data structure. Each time the garbage collection is executed, a

notification is generated. This data is saved on a time series built using JFreeChart [3].

It is important to remark that each point of the time series represents the time when the

garbage collector is executed (x-axis) and the amount of memory used after that

execution (y-axis).

 The linear regression model. One of the matters that this kind of software has to face

is related to the model to be used on the time series. According to [4] it is possible to

use linear models such as linear regression, but it is also stated that non-linear models

can be useful. For simplicity linear regression was selected in order to detect trends.

 The analysis. The analysis made by this demonstration software is based on the

information given by the line obtained using linear regression. Thus, the slope is

analysed to detect whether there is a decreasing, increasing or constant trend.

Testing the software

 Test

In order to execute this test, this configuration was used:

set USER_MEM_ARGS=-Xms2048M -Xmx2048M -Xmn1024M -XX:PermSize=512M -

XX:MaxPermSize=512M -Xss256K -XX:SurvivorRatio=8 -XX:TargetSurvivorRatio=90 -

XX:+UseParallelOldGC -XX:+AlwaysPreTouch -XX:+ParallelRefProcEnabled -

XX:MaxTenuringThreshold=15 -XX:-UseAdaptiveSizePolicy -XX:+DisableExplicitGC

-Dweblogic.threadpool.MinPoolSize=50 -XX:+HeapDumpOnOutOfMemoryError -

XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+UseGCLogFileRotation -

XX:NumberOfGCLogFiles=10 -XX:GCLogFileSize=10M -

Xloggc:C:\u02\oracle\config\domains\Testdomain\GClogs\gclog_WLS_01.txt

These charts show the results of this test.

Chart 01
The following screen shows the memory consumption after the execution of minor

collections on the Eden Space. This constant slope is according to the expected

https://pe.linkedin.com/pub/raul-castillo/42/606/848

Created by: Raúl Castillo

Chart 01: Memory consumption on the Eden Space after minor collections

Chart 02
Here there is one of the important charts given by this program. If you see “Chart 01”

again you could realize the last minor collection happened at 21:29 and as can be seen

in “Chart 02” since that time (21:29) full collections were executed several times.

However, the memory used in the tenured space continued growing up until filling the

whole space available.

Chart 02: Memory consumption on the Tenured Space after full collections

https://pe.linkedin.com/pub/raul-castillo/42/606/848

Created by: Raúl Castillo

Chart 03
As in the previous case, it is possible to see that after 21:29 (when the tenured space

was filled completely) the consecutive executions of full garbage collections were not

enough to free the Eden Space. This situation will lead to the crash of the JVM due to

a memory leak.

Chart 03: Memory consumption on the Eden Space after full collections

https://pe.linkedin.com/pub/raul-castillo/42/606/848

Created by: Raúl Castillo

The analysis tab
With enough experience, an analyst could see these charts to identify that there is a

problem in progress. However, with lots of application servers to analyse it is useful to

have tools that alert administrators in order to investigate these situations quickly. For

this reason, this tab shows the result of the analysis made using the slope and the

execution of full garbage collections. Based on this information an alert is triggered in

order to avoid unexpected crashes.

The analysis tab: As can be seen the text indicates the occurrence of a problem based on the slope analysis.

Limitations.
This is just a demonstration about using time series and linear regression to find trends, which

should allow system administrator to avoid problems within the application server. With this

in mind, the following limitations are remarked:

1. The time series data is not saved in any database or file.

2. It is not possible to select the time series model to identify a trend.

3. It is not possible to use seasonal data. For example, consumption caused during some

periods such as Christmas or any other important date or time.

4. Even line regression was useful for this demonstration. It seems to be other models

could be applied. It is suggested by the time series given for the software over a longer

time.

https://pe.linkedin.com/pub/raul-castillo/42/606/848

Created by: Raúl Castillo

Conclusion
As we are focused on business applications, we often forget how useful mathematics are to

model some phenomena. With this in mind, developing software to analyse situations such as

software aging could give us an important advantage with our customers. Beyond this, there

are other methods such as artificial neural networks, Markov chains, etc. that could be very

useful to improve our IT operations.

This document would not be written without [5]

References list
[1] Using Oracle Cloud Control 12C to Analyse a Memory Leak Problem

http://blog.sysco.no/memory/leak/memory-leak/

[2] Garbage Collection JMX Notifications http://www.fasterj.com/articles/gcnotifs.shtml

[3] JFreeChart: Time Series Demo 8 : Time Series Chart « Chart « Java

http://www.java2s.com/Code/Java/Chart/JFreeChartTimeSeriesDemo8.htm

[4] Using IT Analytics Cloud Service

https://docs.oracle.com/cloud/latest/em_home/ITACS/GUID-812BEEFC-3E54-41B8-BCB3-

929E4BA404CF.htm#ITACS-GUID-812BEEFC-3E54-41B8-BCB3-929E4BA404CF

[5] AC/DC - For Those About to Rock (We Salute You)

https://www.youtube.com/watch?v=RtMGoU9NcMo

https://pe.linkedin.com/pub/raul-castillo/42/606/848
http://blog.sysco.no/memory/leak/memory-leak/
http://www.java2s.com/Code/Java/Chart/JFreeChartTimeSeriesDemo8.htm
https://docs.oracle.com/cloud/latest/em_home/ITACS/GUID-812BEEFC-3E54-41B8-BCB3-929E4BA404CF.htm#ITACS-GUID-812BEEFC-3E54-41B8-BCB3-929E4BA404CF
https://docs.oracle.com/cloud/latest/em_home/ITACS/GUID-812BEEFC-3E54-41B8-BCB3-929E4BA404CF.htm#ITACS-GUID-812BEEFC-3E54-41B8-BCB3-929E4BA404CF

